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ABSTRACT 
Automatic screen rotation improves viewing experience 
and usability of mobile devices, but current gravity-based 
approaches do not support postures such as lying on one 
side, and manual rotation switches require explicit user 
input. iRotateGrasp automatically rotates screens of mobile 
devices to match users’ viewing orientations based on how 
users are grasping the devices. Our insight is that users’ 
grasps are consistent for each orientation, but significantly 
differ between different orientations. Our prototype used a 
total of 44 capacitive sensors along the four sides and the 
back of an iPod Touch, and uses support vector machine 
(SVM) to recognize grasps at 25Hz. We collected 6-users’ 
usage under 108 different combinations of posture, orienta-
tion, touchscreen operation, and left/right/both hands. Our 
offline analysis showed that our grasp-based approach is 
promising, with 80.9% accuracy when training and testing 
on different users, and up to 96.7% if users are willing to 
train the system. Our user study (N=16) showed that iRo-
tateGrasp had an accuracy of 78.8% and was 31.3% more 
accurate than gravity-based rotation.  
ACM Classification: H.5.2 [User Interfaces]: Input devices 
and strategies, Interaction styles; H.1.2 [User/Machine Sys-
tems]: Human factors 
Keywords: Auto rotation; grasp recognition; mobile device; 
adaptive user interface; device orientation  

INTRODUCTION AND RELATED WORK 
Modern mobile devices, such as the iPhone, iPad, Android 
phones, and tablets, support automatic screen rotation in 
order to improve the viewing experience and usability. Var-
ious types of sensors have been used for gravity-based 
screen rotation for mobile devices, including mercury 
switches [11] and 2-axis accelerometers [1,7].  
Current gravity-based approaches assume that users are 
standing or sitting upright while using the devices, which 

causes the screen to rotate incorrectly when users are in 
near horizontal postures, such as when lying down on one 
side. A previous survey of this approach (N=513) [4] 
shows that 91% of the respondents have experienced incor-
rect automatic rotation, with 42% of the respondents en-
countering the problem several times a week.  
Computer vision-based automatic rotation approaches [2,4] 
use face detection to track a user’s intended viewing orien-
tation, rotating the screen accordingly. However, a user’s 
face may not be clearly visible due to reasons including: 
motion blur, fingers blocking the front cameras, limited 
lighting, and device tilt. Even when a user’s face is visible, 
often the images are limited to showing only partial facial 
features. iRotate [4] reported a successful face recognition 

 
Figure 1: Example grasps of a smartphone in portrait 
and landscape orientations: a user’s grasp remains 
consistent even while sitting and lying down, but is 
significantly different between screen orientations. 
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and rotation rate of 11% for iPhones and iPads using Ap-
ple’s iOS 5 face detection API. 
Another common solution to the screen rotation problem is 
to lock the device into the current screen orientation, which 
requires the user to manually disable the auto-rotation fea-
ture. This manual approach, however, requires cognitive 
effort and explicit user input. Even with a visual rotation 
lock indicator, a previous survey [4] shows that for users 
who have used rotation lock have experienced forgetting to 
turn off the lock 58% of the time. Although several ges-
tures have been proposed to temporarily override the auto-
rotation setting [5,8,10], these techniques still require ex-
plicit user input and require the user to learn new gestures 
as well.  
To overcome the challenges of existing automatic screen 
rotation systems, we present iRotateGrasp, a system that 
automatically rotates a mobile device’s screen based on a 
user’s grasps. Our insight is that a user’s grasp is consistent 
for a particular viewing orientation, but is significantly dif-
ferent between screen orientations. For example, when us-
ing a smartphone in portrait mode, a user’s grasp is nearly 
identical—whether the users are sitting, walking, or lying 
down on one side. Figure 1 shows examples of grasps in 
different postures for both portrait and landscape modes.  
Grasp-based interaction have been researched by several 
works [6,9,12,13]. iRotateGrasp senses how a user holds 
the devices, and uses machine learning to learn how various 
grasps map to intended screen orientations. To reduce 
power consumption, iRotateGrasp only performs grasp 
recognition when users unlock a device and when the ac-
celerometer senses significant changes in device orientation. 
To explore how well grasp can be used to infer the correct 
screen orientation, we implemented a phone-sized grasp 
sensing prototype by capacitive sensors and an iPod Touch. 
We recorded grasp data of 6 users performing 108 condi-
tions twice which in combination of different touchscreen 
usages, upright and lying postures, holding hands and ori-
entations. We sampled a total of 162000 grasp recordings, 
and we trained a multi-class support vector machine (SVM) 
to classify which orientation a grasp pattern belongs to. The 
results of 6-fold subject-independent cross validation 
shows 80.9% accuracy.  
Our paper makes the following contributions: 1) we show 
that grasps can be used to automatically rotate screens to 
match users’ view orientation with high accuracy, 2) we 
demonstrate that grasp-based auto rotation improves upon 
gravity-based approaches by supporting both upright and 
horizontal postures, 3) we implement a real-time grasp 
sensing and recognition prototype that is significantly more 
robust than previous computer vision-based approaches. 
Feasibility Study 
To better understand how users grasp devices, we con-
ducted a 20-user feasibility study (10 females, age from 21 
to 36) to observe their grasps of mobile phones. Partici-
pants were asked to use an iPhone 4 to read an article in 

portrait and landscape orientations while sitting and lying 
down. They followed on-screen messages to perform the 
following tasks: 1) sitting and reading in portrait orienta-
tion, 2) lie down on one side, 3) rotate the device 90 de-
grees into landscape orientation, 4) return to sitting position, 
5) rotate the device 90 degrees to portrait. Each task lasted 
15 seconds and each participant performed one trial.  
We video recorded each session and analyzed users’ grasps. 
Our observations show that: 1) none of the users change 
their grasps when changing their postures, 2) grasps for 
portrait orientation are distinct from grasp for landscape 
orientations, 3) single-handed grasps only touch the sides 
of the devices, 4) two-handed grasps touch both the sides 
and the back of the devices. Based on these observations, 
we implemented a grasp-sensing prototype. 

DESIGN AND IMPLEMENTATION 
Our goal is to build a smartphone-sized device that can 
sense users’ grasps. The form factor and weight should be 
similar to a typical smartphone to minimize changes in us-
ers’ behavior. After exploring light sensors, which was 
sensitive to lighting conditions, we decided to use capaci-
tive sensors because we can more easily position the sen-
sors. The prototype consists of the following components: 
an iPod Touch 4, an Arduino Pro Mini 328 circuit board, 4 
MPR 121 capacitive touch sensor controllers connected to 
44 copper foils, and an iPhone 4S case. The prototype, as 
shown in Figure 2, is similar in size to iPhone 4S and its 
weight is 150g, 10g heavier than iPhone 4S. The Arduino 
board samples capacitive sensors at 60Hz. All subsequent 
processing is done by the iPod Touch.  
Based on our observations from the feasibility study on 
where users hands contact the devices, we positioned sen-
sors more densely on the four sides than on the back. As 
shown in Figure 2, we placed 10 sensors on each of the 
long sides and 5 sensors on each of the short sides, with 
0.2cm distance between each sensor. We additionally add-
ed 4 sensors at each corner. On the back, we placed 10 
larger sensors of (2.5cmx2.0cm).  

 
Figure 2: Photos of iRotateGrasp prototype, showing 
an iPod Touch, an Arduino board, 2 multiplexers, 
and 44 capacitive sensors in an iPhone 4S case. 



 

 

The iPod Touch runs iOS 5.1 and is jailbroken so we can 
use its serial port to receive sensor data. It also provides 
3.3v to power the Arduino board and sensors. 
Recognizing Grasp Orientation 
Modern smartphones, such as iOS and Android, support 3 
orientations: portrait, landscape left and landscape right. 
The fourth orientation, portrait upside-down, is supported 
on tablets but not on smartphones. We use LIBSVM [3], a 
support vector machines library, for the grasp orientation 
recognition. We use 1-vs-1 multi-class classification and 
the radial basis function (RBF) as the kernel. We treated 
each sensor reading as a 10-bit input and combined into a 
44-dimension feature vector. 
iRotateGrasp makes use of device power state and built-in 
accelerometers to reduce power consumption. Grasp recog-
nition only runs when a device is unlocked and when the 3-
axis accelerometer detects rotation exceeding the system 
threshold. These two events will trigger grasp recognition 
for a 0.2-second window, and uses voting to determine 
which orientation to rotate to. Since SVM can report the 
probability estimates for each class, we set a probability 
threshold 0.5 to reduce incorrect recognition. If voting does 
not produce a winner, due to a tie or no recognition, then 
iRotateGrasp falls back to gravity-based rotation. 

EVALUATION 
We evaluated our grasp-based approach through a 6-person 
data collection and offline analysis, and a 16-person user 
study using our real-time prototype.  
Data Collection 
We recruited 6 participants (3 female, age 20-24), and 
asked them to perform scrolling, pinch-to-zoom, and typing 
on our prototype to simulate typical usage of mobile 
phones. The 3 actions were performed under the following 
3 × 4 × 3 conditions for a total of 108 tasks: 

• grasping the device using left, right, and both 
hands (3) × 

• while standing, sitting, lying down (facing up), 
and lying down on one side (4) ×  

• in portrait, landscape-left, and landscape-right ori-
entations (3). 

For each task, participants followed on-screen prompt and 
we recorded 5 seconds of sensor data from each task. After 
performing the 108 tasks once, participants took a 5-minute 
break, and then repeated the 108 tasks again. Overall, we 
collected 6 users × 108 tasks × 2 trials × 25Hz × 5 seconds, 
162000 samples in total. We ran a grid search to find a 
proper complexity parameter C=8 and width γ=0.125. 
Recognition Accuracy 
Figure 3 shows the confusion matrix for a 6-fold subject-
independent (leave-one-out) cross-validation, in which the 
SVM is trained on 5 users and tested on the 6th user. This 
shows how well the approach works when there is no train-
ing data from the current user. The accuracy for each sub-
ject ranged from 71.4% to 88.0% in this leave-one-subject-
out cross validation, and the overall average was 80.9%, as 
shown in Figure 4.  
Figure 5 shows the within-subject cross-validation accuracy, 
in which the SVM. This is shows how well our approach 
could perform if the user is willing to train the system. The 
average accuracy is 90.4% across all users, and could be up 
to 96.7%. 
Live System Evaluation 
To evaluate our iRotateGrasp prototype, we conducted a 
16-person user study (6 females, age 16-37). The partici-
pants performed the same tasks as in the feasibility study, 
so each user had 5 orientations for a total of 80. The partic-
ipants were free to use any grasp they liked. 
The grasp recognizer was triggered at the beginning of the 
session, and also when the device detected a change in de-
vice orientation. Participants were shown reading material 
on screen and were prompted to perform the next task eve-
ry 15 seconds. The screen would auto-rotate according to 

Classified as → a b c Accuracy 

a=portrait 46446 9218 6217 75.1% 
b=landscapeLeft 14588 40112 5912 66.2% 

c=landscapeRight 4034 1078 70839 93.3% 

Figure 3: Confusion matrix of subject-independent 
cross validation (6-fold, leave-one-subject-out). 

P1 P2 P3 P4 P5 P6 Average 

71.4% 71.3% 84.8% 82.7% 88.0% 87.0% 80.9% 

Figure 4: Recognition accuracy for each participant 
in leave-one-subject-out cross validation. 

 
Figure 6: Correct and incorrect rotations by iRo-
tateGrasp compared to gravity-based approach. 

 P1 P2 P3 P4 P5 P6 Average 

Accuracy 79.2 % 91.1% 89.8% 93.2% 92.6% 96.7% 90.4% 

Figure 5: Recognition accuracy for within-subject 
cross validation. 



 

 

the grasp recognizer, which returns the most frequently 
detected orientation with confidence level over 50% in 0.2 
seconds (5 grasp images at 25Hz recognition rate) after iOS 
system detecting auto-rotation threshold. 
We recorded the number of correct and incorrect rotation 
for each session, and summarized the results in Figure 6. 
Overall our prototype had 78.8% accuracy, compared to 
60% for gravity-based approach, an improvement of 31.3%. 
However, incorrect rotation occurred in upright posture for 
which gravity-based approach would always be correct. 

DISCUSSION 
Since grasp varies from person to person, an unusual grasp 
that had not been collected as part of the training dataset 
will cause incorrect rotation. One insight to enable training 
from normal usage data is that modern smartphones, such 
as iOS and Android, are designed to only be unlocked in 
portrait orientation. In these cases, we can tag the grasp 
image by the correct orientation, and train the classifier to 
learn the portrait grasp of the user. Computer vision-based 
approaches could also provide ground truth for training. 
Although our accuracy of 78.8% (live) to 80.9% (offline) 
appears to be significantly higher than the 11% accuracy 
reported by previous computer vision-based approach [4], 
one key difference is that face detections typically fails and 
returns “unknown”, where as our approach is more likely to 
fail to a wrong class. Increasing confidence threshold in our 
prototype will likely decrease its accuracy. 
Our live testing results show that our current prototype is 
much less accurate for landscape orientation than for por-
trait orientation. If we are willing to assume that users will 
not be using their device up side down, one approach to 
improve the performance for landscape in upright posture is 
to remove that impossible orientation.   

CONCLUSION & FUTURE WORK 
We have presented iRotateGrasp, a grasp-based approach 
to automatically rotate screens to match users’ viewing 
orientation. It augments gravity-based rotation techniques 
by classifying users’ grasps into users’ viewing orientations 
before falling back to gravity-based rotation. The approach 
can rotate screens correctly in different user postures and 
device orientation without explicit user input.  
We implemented a grasp-sensing prototype and conducted 
several studies to demonstrate that grasps can be used to 
classify users’ viewing orientation at 80.9% accuracy, and 
could reach 90.4% if the user were willing to train the sys-
tem. In addition, it runs in real-time on current mobile de-
vices. The live evaluation of our prototype demonstrated 
that the approach is promising at 78.8% accuracy and out-
performs current gravity-based approaches by 31.3%.  
Currently, we are combining grasp and computer vision-
based approaches. We are also investigating incremental 
learning in order to personalize the classifiers. Looking at 
the delta between grasps that occur before and after orienta-

tion change to determine the screen orientation is another 
way we attempt to improve the accuracy. In addition, if we 
can accurately recognize grasp and orientation, we can in-
fer the user’s posture based on orientation and accelerome-
ter readings. For example, if a user’s viewing orientation is 
detected as portrait but device orientation is detected as 
landscape, the user may be lying on one side. We plan to 
explore uses of user posture as an interaction technique.  
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