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ABSTRACT 
We present iRotate, an approach to automatically rotate 
screens on mobile devices to match users’ face orientation. 
Current approaches to automatic screen rotation are based 
on gravity and device orientation. Our survey of 513 users 
shows that 42% currently experience auto-rotation that 
leads to incorrect viewing orientation several times a week 
or more, and 24% find the problem to be very serious to 
extremely serious. iRotate augments gravity-based 
approach, and uses front cameras on mobile devices to 
detect users’ faces and rotates screens accordingly. It 
requires no explicit user input and supports different user 
postures and device orientations. We have implemented an 
iRotate that works in real-time on iPhone and iPad, and we 
assess the accuracy and limitations of iRotate through a 20-
participant feasibility study.  
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INTRODUCTION 
Mobile devices, such as iPhone, Android phones, and 
tablets, support screen rotation to optimize content layout 
and viewing experience. For example, users may browse 
the web in portrait mode, and rotate the devices to view 
photos and videos in wide-screen mode. Current approaches 
to automatic screen rotation assume that users are using 
devices upright, and uses input from accelerometers to 
trigger rotation so that the top of the screen is always 
pointing up [3,12,18] (i.e. opposite the direction of gravity). 
This gravity-based rotation leads to incorrect screen 
orientation when users change their postures, such as when 
using the devices in bed, and when devices are placed on a 
flat surface.  

 
Figure 1. Automatic screen rotation based on: (a) device 
orientation and gravity (b) iRotate, which automatically 

detects user’s face orientation and rotates screen to 
match. 

Figure 1(a) shows how gravity-based rotation works 
correctly while user is upright, but is consistently wrong 
when users’ lie down on one side. In order to understand 
how common and when incorrect rotation happens, we 
conducted an online survey of 513 smartphone and tablet 
users. 91% of the users reported that they have experienced 
auto-rotation that leads to incorrect viewing orientation, and 
42% reported that the problem occurs several times a week 
or more. The most common occurrence of incorrect rotation 
is when users are lying on one side (57%) followed by 
when users are putting down the devices (23%). 

A common solution to address incorrect auto-rotation is to 
provide users with the option to manually disable auto-
rotation, which locks the device into the current screen 
orientation. For example, Apple introduced a hardware 
switch to lock screen rotation in iPad 1, and added software 
settings to lock screen rotation in iOS 4.0. In addition, a 
lock icon has been added to the status bar to visually 
indicate the state of the rotation lock. Most Android devices 
also provide similar software settings.  

This manual approach, however, requires cognitive effort 
and explicit input to toggle the auto-rotation lock. Even 
with the visual lock indicator, our survey of 513 users 
showed that for users who have used rotation lock, 58% 
have had experience forgetting to turn the lock off. Several 
gestures have been proposed to temporarily override auto-
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rotation [11,17], they still require user to learn the gestures, 
as well as requiring explicit user input. 

We present iRotate, which automatically rotates screens on 
mobile devices based on users’ viewing orientation instead 
of gravity and device orientation. Figure 1(b) shows that it 
rotates screens correctly when users are upright and when 
lying down on one side. iRotate uses the front cameras of 
mobile devices to detect users’ faces, and rotates the 
screens to match users’ viewing orientation. It supports 
usage in various user postures without requiring any 
explicit user input.  

In addition, instead of constantly capturing and analyzing 
data from the front camera, we use accelerometers to sense 
changes in device orientation and then trigger face 
detection. This optimization helps reduce computation and 
battery usage.  

Because iRotate uses computer vision for face detection, it 
needs to see sufficient portions of users’ faces, which may 
be obscured by fingers and may move outside the cameras’ 
field of view. In order to assess the practicality and 
limitations of this approach, we conducted a 20-participant 
study to evaluate the percentage of times that users’ face 
orientations are detectable. We asked the participants to 
perform reading tasks on smartphones and tablets while 
they transition between sitting upright and lying down on 
one side, and also asked them to rotate the devices by 90 
degrees in those postures.  

We recorded videos using the front cameras and analyzed 
the video frames to evaluate the feasibility of iRotate and 
how well it works on current mobile devices. For 
feasibility, we manually reviewed all video frames and 
labeled the face orientation when sufficient facial features 
are present. In addition, we implemented iRotate on iPhone 
and iPad using the face detection API introduced in iOS 5. 
Our results show that sufficient facial features are present to 
correctly detect face orientation within 77.6% of the time. 
The iOS face detection API can correctly identify face 
orientation 10.7% of the time. 

Our paper makes the following contributions: 1) a new 
approach to automatic screen rotation based on users’ face 
orientation instead of device orientation, 2) quantified the 
feasibility of using front-camera based approach. 

RELATED WORK 
Fitzmaurice et al. described Rotating User Interface which 
rotates in discrete, 90 degrees steps [6]. Various types of 
sensors have been used to sense changes in device 
orientation to automatically rotate screens relative to 
gravity. Schmidt et al. [18] used two mercury switches to 
implement auto-rotation so that users can change between 
portrait and landscape views of documents by simply 
rotating the device. Also, users can take turns in interacting 
with the same device by simple handing it over without 
having to rotate it. Bartlett et al. [3] and Hinckley et al. [12] 

both used tilt sensors (2-axis accelerometers). The latter 
group used 45-degree angle threshold to detect orientation 
changes more quickly. They also used 0.5 second threshold 
and 5-degree dead band for rotation stability. 

Gestures have also been proposed to trigger rotation and 
override auto-rotation. Apple patented a two-finger rotation 
gesture to rotate screens [17], and placing both thumbs on 
the screen as users rotate their devices to trigger rotation 
without using other sensors [7]. Sensor synaesthesia [11] 
proposed touching the screen with one finger and holding it 
down while rotating the device, in order ice and user 
movement as interaction techniques. For example, 
VideoMouse [13], which based on the design of 
Rockin’Mouse [1], uses a camera to extend degree of 
freedom (DOF) for rotation, zooming and translation. 
TinyMotion [23] senses 6DOF without additional sensors 
by analyzing image sequences captured by built-in camera. 
iSeeU [20] used front cameras on mobile devices to detect 
face movement for scrolling and zooming.  

Face detection APIs are increasingly being integrated into 
mobile platforms, which makes the capability readily 
available to all applications on those platforms. Native, face 
detection APIs were introduced in Android 1.5 and iOS 5. 
Hannuksela et al. [8] presented a feature based head 
tracking method which can run in real-time on a resource 
limited mobile device.  

Gábor Blaskó et al. [4] use a Haar-feature-based face 
detector [16] and Continuously Adaptive Mean Shift 
(CAMShift) tracking algorithm [5] to track users’ head roll 
angle and update the display when the inferred orientation 
has changed more than 15°.  

SURVEY: AUTO-ROTATION IN THE WILD 
To help us better understand how well auto-rotation works 
in the real world, we created an online questionnaire for 
smartphone and tablet users. The questionnaire focused on: 
1) when and how incorrect rotation occurs, and 2) 
awareness and usability of the rotation lock. To ensure we 
get responses from users who regularly use devices that 
have both auto-rotation and rotation lock, we screened for 
iPhone and iPad users. We received a total of 513 responses 
from 394 iPhone users and 119 iPad users. Their average 
experience using the devices was 9.9 months and 4.7 
months respectively. The respondents’ age ranged from 18 
to 48 years old (average 26) and 66% were male.  

When and How Incorrect Rotation Occurs 
Of the 513 respondents, 91% reported that they have 
experienced incorrect auto-rotation, 42% reported that the 
problem occurs several times a week or more, and 24% 
reporting it to be a serious to very serious problem. When 
asked about the most likely cause of incorrect rotation, 57% 
reported lying down on one side, followed by placing the 
devices on a flat surface at 23%, and lying down and facing 
up at 19%. These incorrect rotations are caused by the 



rotation algorithm rotating the screens relative to gravity, 
while users are expecting the screens to match their view 
orientations. In particular, a significantly higher percentage 
of iPhone users chose lying down on one side as the most 
likely cause, at 66% compared to 47% for iPad users. 
Details of the results for iPhone and iPad are shown in 
Table 1 and Table 2. 

Awareness and Usability of Rotation Lock 
70% of iPhone respondents were aware of the rotation lock 
on their devices. For iPad users, the percentage is higher at 
84%. To understand how quickly users learn about rotation 
lock, we compare novice users who have used their devices 
for less than four months, to all other users. For novice 
iPhone users, only 49% of them are aware of the rotation 
lock, compared to 80% for more experienced users. Novice 
iPad users become aware of the rotation lock more quickly, 
with 83% being aware of it compared to 86% for more 
experienced users. One possible reason for earlier and 
higher awareness on the iPad is because it has a hardware 

switch that can be configured by users, via a software 
setting, to be a rotation lock or a mute switch. The hardware 
switch defaults to a rotation lock on iPad 1, but defaults to a 
mute switch on iPad 2. 

Of those who are aware of the rotation lock, 74% of iPhone 
users and 87% iPad users make use of it. Among those, 
61% iPhone users and 55% iPad users reported that they 
would forget to unlock when they need auto-rotation. Given 
that the visual rotation lock status is prominently shown on 
the status bar of these devices. 

DESIGN 
Our goal is to automatically rotate screens to match users’ 
viewing orientation. Accelerometers are capable of 
detecting device movement and device orientation relative 
to gravity, but cannot detect users’ viewing orientation. We 
use front cameras, which are increasingly common on 
mobile devices, to capture videos of users and detect their 
face orientation. A simple approach can be entirely camera-

Question iPhone iPad Overall 

Aware of  
rotation lock 

All users 70% 84% 77% 

Novice users  49% 83% 66% 

Experienced users  80% 86% 83% 

Usage of  
rotation lock 

Users who make use of it 74% 84% 79% 

Forget to unlock  
when they need auto-rotation 61% 55% 58% 

Table 2. Survey results from 513 users on the usage of rotation lock. 

Question iPhone iPad Overall 

How often incorrect rotation occurs 

Several times a day 18% 24% 21% 

Once a day 3% 6% 5% 

Several times a week 18% 14% 16% 

Once a week or less 51% 47% 49% 

Never 9% 8% 9% 

When incorrect rotation occurs 

Lie down on one side 66% 47% 57% 

Place the device  
on the flat surface 11% 35% 23% 

Lie down and face up 21% 16% 19% 

How serious is the  
problem of  incorrect rotation? 

Not serious at all 15% 15% 15% 

Not very serious 26% 26% 26% 

Somewhat serious 35% 31% 34% 

Very serious 19% 19% 19% 

Extremely serious 5% 9% 5% 

Table 1. Survey results from 513 users on incorrect auto-rotation. 



based [4], without using any additional sensors. This 
approach, however, requires constant face detection which 
requires significant computation and power. In addition, 
face detection may be challenging in situations such as in 
low light and in rapid movement.  

By augmenting 3-axis accelerometers with camera-based 
face detection, we use face orientation when it is available, 
and fall back to gravity-based rotation otherwise. The 
accelerometer is used to detect changes in device 
orientation, which can be caused by device rotation or by 
changes in users’ posture. Once a change in device 
orientation is detected, iRotate turns on face detection and 
rotates that screen if users’ face orientation, relative to the 
device, has changed. This approach reduces computation 
and power consumption by not running face detection 
constantly. In addition, it further simplifies computation by 
constraining the possible face orientation, relative to device, 
from three (current, left, and right) to two (current, plus one 
of left or right).   

Orientation Threshold 
We use an orientation threshold to trigger auto-rotation. As 
shown in Figure 2, we define θ as the angle between 
device’s x-axis and earth’s horizontal plane, and φ as the 
angle between device’s y-axis. We experimentally 
measured the orientation threshold used by iPhone and 
iPad, by monitoring the accelerometer readings and rotating 
the devices as slowly as possible until the screen rotated. 
We found that the threshold is θ - φ =30, with 2 degrees of 
dead band, for both iPhone and iPad. We use the same 
threshold to trigger face detection for iRotate.  

The detailed orientation threshold is defined as follows 

if θ – φ > 30, rotate to landscape 

if φ > 30 and θ ≤ φ, rotate to portrait. 

 
Figure 2. Orientation threshold angles. 

FEASIBILITY STUDY 
Our user study has the following two goals: 1) assess 
feasibility of face orientation detection using front cameras, 
and 2) evaluate face orientation detection performance on 
current mobile devices. 

Device 
We measured the front camera’s field of view (FOV) on 
three popular smartphones and three tablets, shown in Table 
3 and Table 4. We found that the smartphones had nearly 
identical FOV and had the same VGA resolution 
(640x480). iPad 2 and Motorola Xoom had similar FOV, 
and HTC Flyer tablet having narrower FOV. Their 
resolution ranged from VGA to 2 mega-pixels. We selected 
the iPhone 4 and iPad 2 for our user study, as they have 
similar field of view to other devices, and are popular on 
the market.  

In terms of processors, iPhone 4 uses Apple’s A4 CPU, 
which has a single ARM Cortex-A8 core running at up to 
1GHz. iPad 2 uses Apple’s A5 CPU, which has dual ARM 
Cortex-A9 cores running at 1GHz. Both of these processors 
are comparable in performance to other high-end 
device.

Experiment 
Participants were asked to perform a reading task, and 
scrolling as necessary, to simulate typical usage of 
smartphones and tablets. The experiments started with 
participants sitting on the edge of a sofa bed and holding a 
mobile device in portrait mode. The participants followed 
on-screen prompt messages, and went through the 
following four tasks while reading: 1) lie down on one side, 
2) rotate the device 90 degrees, 3) return to the sitting 
position, 4) rotate the device 90 degrees. Each posture 
lasted 30 seconds. Each participant performed one trial 
using an iPhone 4 and one trial using an iPad 2. The order 
of the devices was counter balanced across participants.  

We recruited 20 participants, 10 female, from our university 
population. The participants’ age ranged from 21 to 36. 

Smart 
Phones iPhone 4 HTC 

Desire S 
Google  
Nexus S 

Portrait 44 43 44 

Landscape 55 56 57 

Table 3. Front camera’s field of view for smartphones 

Tablets iPad 2 HTC 
Flyer 

Motorola 
Xoom 

Portrait 44 33 44 

Landscape 57 51 59 

Table 4. Front camera’s field of view for tablets 



Implementation 
We developed a custom iOS app for the experiment. It was 
a universal app optimized for both iPhone and iPad’s 
screens. The app displayed reading material and prompted 
users to perform the next task every 30 seconds. It recorded 
video at 30 frames/second using the front cameras during 
the entire experiment for our offline, “wizard of oz” 
analysis. In addition, it recorded 3-axis accelerometer 
readings at 10Hz. 

To evaluate how well face detection performs on current 
mobile devices, we used the face detection API 
(CIDetector) introduced in iOS 5. Given an image and its 
orientation, the detection API returns face features, 
specifically the locations of eyes and mouth, if they are 
present in the image. Up to four possible image orientations 
(portrait, landscape left, landscape right, portrait upside 
down) need to be tested, in order to determine if a face is 
present and what its orientation is. [2,9,10,14,19,21,22,24] 

While recording the video throughout the experiment, we 
streamed those video frames to the face detection API in 
real time. Using the readings from the accelerometer, we 
were able to reduce the set of possible orientations from 
four to two (i.e. the current orientation, plus left or right).  
On iOS 5 beta 7, the average face detection speed we 
observed in all experiments was 2.6 images/second on 
iPhone 4 and 7.8 images/second on iPad 2. Because we 
must test two possible orientations for each image, the 
effective face orientation detection rate was 1.3Hz for 
iPhone 4 and 3.9Hz for iPad 2. 

Our functional prototype automatically rotates screens to 
the orientation detected by the face detection API. It counts 
the number of frames with detected face orientation within 
a 0.5-second window, and rotates to the most frequently 
detected orientation. The 0.5-second threshold is the 
average rotation delay for iPhone and iPad, and is also the 
value proposed by Hinckley et al. [12]. If the frequency of 
multiple possible orientations turned out to be the same, or 
there was no face detected from those frame, then it rotates 
screen according to the 3-axis accelerometer.  

Results 
For face orientation detection to be feasible, sufficient 
facial features must be within the front camera’s field of 
view. Figure 3 shows examples of partial faces that contain 
sufficient information to identify their orientation. Figure 4 
shows examples that we were unable to identify the face 
orientation. Common causes include incorrect exposure, 
fingers obscuring the cameras, and camera shake. 

Detection Performance 
To assess the feasibility of our camera-based approach, we 
used the “wizard of oz” method and classified each 
captured video frame manually. Specifically, we looked at 
the one-second window starting from moment the auto-
rotation threshold angle was reached (Tthreshold), as detected 
by the accelerometers. In total, we labeled 4800 frames (30 

frames/second x 1 second x 20 participants x 2 devices x 4 
tasks), and we were able to identify users’ face orientation 
in 77.6% of the frames.  

   

Figure 3. Features of face. Edge of face 

   

Figure 4. Finger block the camera 

 

To assess the performance of current devices, we compare 
the detection results returned by the iOS face detection API 
to the correct orientation. A frame is considered to be 
correctly detected if and only if a face has been detected 
and the orientation is correct. A total of 618 detection were 
performed, and the API was able to identify users’ face 
orientation correctly 10.7% of the time. This detection 
performance is significantly lower than what is feasible, 
which is up to 77.6%. This is likely because the front 
camera usually captures images that only have part of users 
faces, but the iOS algorithms require that user’s eyes and 
mouth be present. Algorithms that only require partial face 
features are likely to improve the success rate.  

Figure 5 and Figure 6 shows the detailed success rate for 
each of the four tasks which, from left to right, are: 1) user, 
holding the device in portrait, changed posture from sitting 
to lying down, 2) user rotated device from portrait to 
landscape while lying down, 3) user changed posture from 
lying down to sitting, and 4) user rotated device from 
landscape to portrait while sitting.  

The front camera’s position on the devices has strong 
effects on detection rate, as they are easy to be obscured in 
landscape mode. The first task had the highest success rate 
compared to the rest, because the front cameras are near the 
top of the devices when held in portrait orientation, and the 
cameras had a clear view of the user. For iPhone, the lowest 
success rate is when users were holding it in landscape 
mode and transitioning from lying down to sitting. Because 
the iPhone’s front camera, in landscape mode, is under the 
users’ thumbs, the cameras were obscured a significant 
portion of times.   

The weight of the iPad made rotation more difficult while 
lying down compared to sitting upright and compare. The 



instability caused a large number of blurry images as well 
as many images without users’ faces, causing that iPad task 
to have the lowest success rate across both devices and 
across all tasks.  

Figure 5. Successful face orientation detection rate for iPhone 

Figure 6. Successful face orientation detection rate for iPad 

Feasibility Analysis 
We present a feasibility analysis of iRotate across all users 
trials. In a trial, as soon as a frame has a detectable face 
orientation, iRotate can correctly rotate the screen 
accordingly. That trial is considered to be successful, even 
if all subsequent frames do not have detectable face 
orientation.  

Figure 7 shows the cumulative success rate across all trials, 
for the four orientations. The x-axis shows the time elapsed 
after Tthreshold, which is the moment that the orientation 
threshold angle has been exceeded, as detected by the 
accelerometers. The four figures correspond to the four 
tasks and orientation changes. The vertical dotted line, 
drawn at 0.5 seconds, shows the stability threshold 
proposed by Hinckley et al. [12].  

For example, although the successful detection rate for 
rotating iPad while lying down is only 45.7%, the 
cumulative success rate starts at 60% at 0.1 seconds, 
improves to 65% at 0.5 seconds, and 80% at 1.0 second. 
Overall, iRotate’s front camera-based approach has success 
rate ranging between 65-100% at 0.5 seconds, and between 
75-100% for the four tasks on iPhone and iPad. 

 

 

 

 
Figure 7. Cumulative success rate of human face orientation 
detection across the four tasks:  1) user, holding the device in 
portrait, changed posture from sitting to lying down, 2) user 

rotated device from portrait to landscape while lying down, 3) 
user changed posture from lying down to sitting, and 4) user 

rotated device from landscape to portrait while sitting. 
 



DISCUSSION 

Orientation Detection based on Partial Faces 
iOS 5’s face detection API requires two eyes and a mouth 
to be present in order to be detected. However, the front 
cameras frequently only have partial faces in their field of 
view. This mismatch contributes to the poor detection 
performance we observed in our user study. Partial face 
detection and face tracking techniques may help to solve 
the problem. Camera with even wider field of view should 
also help capture more portions of a face, improve the 
detection performance.  

Another cause for poor detection performance is that users’ 
often obscure the camera while hold the devices in 
landscape mode. Adding another camera on the border of 
the device, or placing one behind the display [15] should 
help improve the devices’ view of users’ faces.  

Janicek, M. [15] filed a patent that integrate a camera in the 
center of the display may be a good solution to this 
problem. 

Limitations 
Vision-based techniques are sensitive to lighting conditions. 
We observed images from the user study for which strong 
backlight triggered the auto brightness adjustment of the 
camera. It caused users’ faces to under expose and became 
un-recognizable. Also, face detection performance 
decreases as light level decreases, which would cause 
iRotate to fall back to using gravity-based rotation in 
extremely low-light conditions. Adding active infrared 
emitter with IR capable cameras to the mobile devices is 
one possible improvement, enabling face orientation 
detection to function even in complete darkness. 

CONCLUSIONS AND FUTURE WORK 
We have presented iRotate, a new, front camera-based 
approach to automatically rotate screens to match users’ 
face orientation instead of gravity. It augments gravity-
based rotation techniques by rotating to match users’ face 
orientation, before falling back to gravity-based rotation. 
The approach can rotate screens correctly in different user 
postures and device orientation, and does not require 
explicit user input.  

Our other contributions include a survey quantifying the 
frequency and the most likely cause of incorrect auto-
rotation, as well as the awareness and usability of rotation 
lock. Our survey results show strong user needs for better 
auto-rotation. We also completed a 20-person study to 
assess the feasibility of our front camera-based approach, as 
well as evaluated the performance of face detection 
algorithms running on current generation of mobile devices.  

Our study results show that current face detection 
algorithms perform poorly both in terms of speed and 
detection correctness. This is likely because the front 
camera typical captures images with part of users’ faces 
instead of the entire face. We plan to collaborate with 

computer vision researchers and machine learning 
researcher to develop algorithms that can detect face 
orientation based on partial face features, such as hair and 
two eyebrows. In addition, we plan to address the second 
most common cause of incorrect auto-rotation, which is 
when devices are being used on flat surfaces. We plan to 
explore using gyroscope readings to trigger face detection 
using the front camera, and assess its feasibility.  
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