
iRotate: Automatic Screen Rotation based on Face
Orientation

Lung-Pan Cheng1, Fang-I Hsiao1, Yen-Ting Liu2, Mike Y. Chen1
1Department of Computer Science and Information Engineering

2Department of Electrical Engineering
National Taiwan University

{r98922168,b96902005,b97901121,mikechen}@csie.ntu.edu.tw

ABSTRACT
We present iRotate, an approach to automatically rotate
screens on mobile devices to match users’ face orientation.
Current approaches to automatic screen rotation are based
on gravity and device orientation. Our survey of 513 users
shows that 42% currently experience auto-rotation that
leads to incorrect viewing orientation several times a week
or more, and 24% find the problem to be very serious to
extremely serious. iRotate augments gravity-based
approach, and uses front cameras on mobile devices to
detect users’ faces and rotates screens accordingly. It
requires no explicit user input and supports different user
postures and device orientations. We have implemented an
iRotate that works in real-time on iPhone and iPad, and we
assess the accuracy and limitations of iRotate through a 20-
participant feasibility study.

Author Keywords
Device orientation, Face detection

ACM Classification Keywords
H.5.2 [User Interfaces]: Interaction styles; Input devices
and strategies

INTRODUCTION
Mobile devices, such as iPhone, Android phones, and
tablets, support screen rotation to optimize content layout
and viewing experience. For example, users may browse
the web in portrait mode, and rotate the devices to view
photos and videos in wide-screen mode. Current approaches
to automatic screen rotation assume that users are using
devices upright, and uses input from accelerometers to
trigger rotation so that the top of the screen is always
pointing up [3,12,18] (i.e. opposite the direction of gravity).
This gravity-based rotation leads to incorrect screen
orientation when users change their postures, such as when
using the devices in bed, and when devices are placed on a
flat surface.

Figure 1. Automatic screen rotation based on: (a) device
orientation and gravity (b) iRotate, which automatically

detects user’s face orientation and rotates screen to
match.

Figure 1(a) shows how gravity-based rotation works
correctly while user is upright, but is consistently wrong
when users’ lie down on one side. In order to understand
how common and when incorrect rotation happens, we
conducted an online survey of 513 smartphone and tablet
users. 91% of the users reported that they have experienced
auto-rotation that leads to incorrect viewing orientation, and
42% reported that the problem occurs several times a week
or more. The most common occurrence of incorrect rotation
is when users are lying on one side (57%) followed by
when users are putting down the devices (23%).

A common solution to address incorrect auto-rotation is to
provide users with the option to manually disable auto-
rotation, which locks the device into the current screen
orientation. For example, Apple introduced a hardware
switch to lock screen rotation in iPad 1, and added software
settings to lock screen rotation in iOS 4.0. In addition, a
lock icon has been added to the status bar to visually
indicate the state of the rotation lock. Most Android devices
also provide similar software settings.

This manual approach, however, requires cognitive effort
and explicit input to toggle the auto-rotation lock. Even
with the visual lock indicator, our survey of 513 users
showed that for users who have used rotation lock, 58%
have had experience forgetting to turn the lock off. Several
gestures have been proposed to temporarily override auto-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2012, May 5-10, 2012, Austin, TX, USA.
Copyright 2012 ACM xxx-x-xxxx-xxxx-x/xx/xx...$10.00.

rotation [11,17], they still require user to learn the gestures,
as well as requiring explicit user input.

We present iRotate, which automatically rotates screens on
mobile devices based on users’ viewing orientation instead
of gravity and device orientation. Figure 1(b) shows that it
rotates screens correctly when users are upright and when
lying down on one side. iRotate uses the front cameras of
mobile devices to detect users’ faces, and rotates the
screens to match users’ viewing orientation. It supports
usage in various user postures without requiring any
explicit user input.

In addition, instead of constantly capturing and analyzing
data from the front camera, we use accelerometers to sense
changes in device orientation and then trigger face
detection. This optimization helps reduce computation and
battery usage.

Because iRotate uses computer vision for face detection, it
needs to see sufficient portions of users’ faces, which may
be obscured by fingers and may move outside the cameras’
field of view. In order to assess the practicality and
limitations of this approach, we conducted a 20-participant
study to evaluate the percentage of times that users’ face
orientations are detectable. We asked the participants to
perform reading tasks on smartphones and tablets while
they transition between sitting upright and lying down on
one side, and also asked them to rotate the devices by 90
degrees in those postures.

We recorded videos using the front cameras and analyzed
the video frames to evaluate the feasibility of iRotate and
how well it works on current mobile devices. For
feasibility, we manually reviewed all video frames and
labeled the face orientation when sufficient facial features
are present. In addition, we implemented iRotate on iPhone
and iPad using the face detection API introduced in iOS 5.
Our results show that sufficient facial features are present to
correctly detect face orientation within 77.6% of the time.
The iOS face detection API can correctly identify face
orientation 10.7% of the time.

Our paper makes the following contributions: 1) a new
approach to automatic screen rotation based on users’ face
orientation instead of device orientation, 2) quantified the
feasibility of using front-camera based approach.

RELATED WORK
Fitzmaurice et al. described Rotating User Interface which
rotates in discrete, 90 degrees steps [6]. Various types of
sensors have been used to sense changes in device
orientation to automatically rotate screens relative to
gravity. Schmidt et al. [18] used two mercury switches to
implement auto-rotation so that users can change between
portrait and landscape views of documents by simply
rotating the device. Also, users can take turns in interacting
with the same device by simple handing it over without
having to rotate it. Bartlett et al. [3] and Hinckley et al. [12]

both used tilt sensors (2-axis accelerometers). The latter
group used 45-degree angle threshold to detect orientation
changes more quickly. They also used 0.5 second threshold
and 5-degree dead band for rotation stability.

Gestures have also been proposed to trigger rotation and
override auto-rotation. Apple patented a two-finger rotation
gesture to rotate screens [17], and placing both thumbs on
the screen as users rotate their devices to trigger rotation
without using other sensors [7]. Sensor synaesthesia [11]
proposed touching the screen with one finger and holding it
down while rotating the device, in order ice and user
movement as interaction techniques. For example,
VideoMouse [13], which based on the design of
Rockin’Mouse [1], uses a camera to extend degree of
freedom (DOF) for rotation, zooming and translation.
TinyMotion [23] senses 6DOF without additional sensors
by analyzing image sequences captured by built-in camera.
iSeeU [20] used front cameras on mobile devices to detect
face movement for scrolling and zooming.

Face detection APIs are increasingly being integrated into
mobile platforms, which makes the capability readily
available to all applications on those platforms. Native, face
detection APIs were introduced in Android 1.5 and iOS 5.
Hannuksela et al. [8] presented a feature based head
tracking method which can run in real-time on a resource
limited mobile device.

Gábor Blaskó et al. [4] use a Haar-feature-based face
detector [16] and Continuously Adaptive Mean Shift
(CAMShift) tracking algorithm [5] to track users’ head roll
angle and update the display when the inferred orientation
has changed more than 15°.

SURVEY: AUTO-ROTATION IN THE WILD
To help us better understand how well auto-rotation works
in the real world, we created an online questionnaire for
smartphone and tablet users. The questionnaire focused on:
1) when and how incorrect rotation occurs, and 2)
awareness and usability of the rotation lock. To ensure we
get responses from users who regularly use devices that
have both auto-rotation and rotation lock, we screened for
iPhone and iPad users. We received a total of 513 responses
from 394 iPhone users and 119 iPad users. Their average
experience using the devices was 9.9 months and 4.7
months respectively. The respondents’ age ranged from 18
to 48 years old (average 26) and 66% were male.

When and How Incorrect Rotation Occurs
Of the 513 respondents, 91% reported that they have
experienced incorrect auto-rotation, 42% reported that the
problem occurs several times a week or more, and 24%
reporting it to be a serious to very serious problem. When
asked about the most likely cause of incorrect rotation, 57%
reported lying down on one side, followed by placing the
devices on a flat surface at 23%, and lying down and facing
up at 19%. These incorrect rotations are caused by the

rotation algorithm rotating the screens relative to gravity,
while users are expecting the screens to match their view
orientations. In particular, a significantly higher percentage
of iPhone users chose lying down on one side as the most
likely cause, at 66% compared to 47% for iPad users.
Details of the results for iPhone and iPad are shown in
Table 1 and Table 2.

Awareness and Usability of Rotation Lock
70% of iPhone respondents were aware of the rotation lock
on their devices. For iPad users, the percentage is higher at
84%. To understand how quickly users learn about rotation
lock, we compare novice users who have used their devices
for less than four months, to all other users. For novice
iPhone users, only 49% of them are aware of the rotation
lock, compared to 80% for more experienced users. Novice
iPad users become aware of the rotation lock more quickly,
with 83% being aware of it compared to 86% for more
experienced users. One possible reason for earlier and
higher awareness on the iPad is because it has a hardware

switch that can be configured by users, via a software
setting, to be a rotation lock or a mute switch. The hardware
switch defaults to a rotation lock on iPad 1, but defaults to a
mute switch on iPad 2.

Of those who are aware of the rotation lock, 74% of iPhone
users and 87% iPad users make use of it. Among those,
61% iPhone users and 55% iPad users reported that they
would forget to unlock when they need auto-rotation. Given
that the visual rotation lock status is prominently shown on
the status bar of these devices.

DESIGN
Our goal is to automatically rotate screens to match users’
viewing orientation. Accelerometers are capable of
detecting device movement and device orientation relative
to gravity, but cannot detect users’ viewing orientation. We
use front cameras, which are increasingly common on
mobile devices, to capture videos of users and detect their
face orientation. A simple approach can be entirely camera-

Question iPhone iPad Overall

Aware of
rotation lock

All users 70% 84% 77%

Novice users 49% 83% 66%

Experienced users 80% 86% 83%

Usage of
rotation lock

Users who make use of it 74% 84% 79%

Forget to unlock
when they need auto-rotation 61% 55% 58%

Table 2. Survey results from 513 users on the usage of rotation lock.

Question iPhone iPad Overall

How often incorrect rotation occurs

Several times a day 18% 24% 21%

Once a day 3% 6% 5%

Several times a week 18% 14% 16%

Once a week or less 51% 47% 49%

Never 9% 8% 9%

When incorrect rotation occurs

Lie down on one side 66% 47% 57%

Place the device
on the flat surface 11% 35% 23%

Lie down and face up 21% 16% 19%

How serious is the
problem of incorrect rotation?

Not serious at all 15% 15% 15%

Not very serious 26% 26% 26%

Somewhat serious 35% 31% 34%

Very serious 19% 19% 19%

Extremely serious 5% 9% 5%

Table 1. Survey results from 513 users on incorrect auto-rotation.

based [4], without using any additional sensors. This
approach, however, requires constant face detection which
requires significant computation and power. In addition,
face detection may be challenging in situations such as in
low light and in rapid movement.

By augmenting 3-axis accelerometers with camera-based
face detection, we use face orientation when it is available,
and fall back to gravity-based rotation otherwise. The
accelerometer is used to detect changes in device
orientation, which can be caused by device rotation or by
changes in users’ posture. Once a change in device
orientation is detected, iRotate turns on face detection and
rotates that screen if users’ face orientation, relative to the
device, has changed. This approach reduces computation
and power consumption by not running face detection
constantly. In addition, it further simplifies computation by
constraining the possible face orientation, relative to device,
from three (current, left, and right) to two (current, plus one
of left or right).

Orientation Threshold
We use an orientation threshold to trigger auto-rotation. As
shown in Figure 2, we define θ as the angle between
device’s x-axis and earth’s horizontal plane, and φ as the
angle between device’s y-axis. We experimentally
measured the orientation threshold used by iPhone and
iPad, by monitoring the accelerometer readings and rotating
the devices as slowly as possible until the screen rotated.
We found that the threshold is θ - φ =30, with 2 degrees of
dead band, for both iPhone and iPad. We use the same
threshold to trigger face detection for iRotate.

The detailed orientation threshold is defined as follows

if θ – φ > 30, rotate to landscape

if φ > 30 and θ ≤ φ, rotate to portrait.

Figure 2. Orientation threshold angles.

FEASIBILITY STUDY
Our user study has the following two goals: 1) assess
feasibility of face orientation detection using front cameras,
and 2) evaluate face orientation detection performance on
current mobile devices.

Device
We measured the front camera’s field of view (FOV) on
three popular smartphones and three tablets, shown in Table
3 and Table 4. We found that the smartphones had nearly
identical FOV and had the same VGA resolution
(640x480). iPad 2 and Motorola Xoom had similar FOV,
and HTC Flyer tablet having narrower FOV. Their
resolution ranged from VGA to 2 mega-pixels. We selected
the iPhone 4 and iPad 2 for our user study, as they have
similar field of view to other devices, and are popular on
the market.

In terms of processors, iPhone 4 uses Apple’s A4 CPU,
which has a single ARM Cortex-A8 core running at up to
1GHz. iPad 2 uses Apple’s A5 CPU, which has dual ARM
Cortex-A9 cores running at 1GHz. Both of these processors
are comparable in performance to other high-end
device.

Experiment
Participants were asked to perform a reading task, and
scrolling as necessary, to simulate typical usage of
smartphones and tablets. The experiments started with
participants sitting on the edge of a sofa bed and holding a
mobile device in portrait mode. The participants followed
on-screen prompt messages, and went through the
following four tasks while reading: 1) lie down on one side,
2) rotate the device 90 degrees, 3) return to the sitting
position, 4) rotate the device 90 degrees. Each posture
lasted 30 seconds. Each participant performed one trial
using an iPhone 4 and one trial using an iPad 2. The order
of the devices was counter balanced across participants.

We recruited 20 participants, 10 female, from our university
population. The participants’ age ranged from 21 to 36.

Smart
Phones iPhone 4 HTC

Desire S
Google
Nexus S

Portrait 44 43 44

Landscape 55 56 57

Table 3. Front camera’s field of view for smartphones

Tablets iPad 2 HTC
Flyer

Motorola
Xoom

Portrait 44 33 44

Landscape 57 51 59

Table 4. Front camera’s field of view for tablets

Implementation
We developed a custom iOS app for the experiment. It was
a universal app optimized for both iPhone and iPad’s
screens. The app displayed reading material and prompted
users to perform the next task every 30 seconds. It recorded
video at 30 frames/second using the front cameras during
the entire experiment for our offline, “wizard of oz”
analysis. In addition, it recorded 3-axis accelerometer
readings at 10Hz.

To evaluate how well face detection performs on current
mobile devices, we used the face detection API
(CIDetector) introduced in iOS 5. Given an image and its
orientation, the detection API returns face features,
specifically the locations of eyes and mouth, if they are
present in the image. Up to four possible image orientations
(portrait, landscape left, landscape right, portrait upside
down) need to be tested, in order to determine if a face is
present and what its orientation is. [2,9,10,14,19,21,22,24]

While recording the video throughout the experiment, we
streamed those video frames to the face detection API in
real time. Using the readings from the accelerometer, we
were able to reduce the set of possible orientations from
four to two (i.e. the current orientation, plus left or right).
On iOS 5 beta 7, the average face detection speed we
observed in all experiments was 2.6 images/second on
iPhone 4 and 7.8 images/second on iPad 2. Because we
must test two possible orientations for each image, the
effective face orientation detection rate was 1.3Hz for
iPhone 4 and 3.9Hz for iPad 2.

Our functional prototype automatically rotates screens to
the orientation detected by the face detection API. It counts
the number of frames with detected face orientation within
a 0.5-second window, and rotates to the most frequently
detected orientation. The 0.5-second threshold is the
average rotation delay for iPhone and iPad, and is also the
value proposed by Hinckley et al. [12]. If the frequency of
multiple possible orientations turned out to be the same, or
there was no face detected from those frame, then it rotates
screen according to the 3-axis accelerometer.

Results
For face orientation detection to be feasible, sufficient
facial features must be within the front camera’s field of
view. Figure 3 shows examples of partial faces that contain
sufficient information to identify their orientation. Figure 4
shows examples that we were unable to identify the face
orientation. Common causes include incorrect exposure,
fingers obscuring the cameras, and camera shake.

Detection Performance
To assess the feasibility of our camera-based approach, we
used the “wizard of oz” method and classified each
captured video frame manually. Specifically, we looked at
the one-second window starting from moment the auto-
rotation threshold angle was reached (Tthreshold), as detected
by the accelerometers. In total, we labeled 4800 frames (30

frames/second x 1 second x 20 participants x 2 devices x 4
tasks), and we were able to identify users’ face orientation
in 77.6% of the frames.

Figure 3. Features of face. Edge of face

Figure 4. Finger block the camera

To assess the performance of current devices, we compare
the detection results returned by the iOS face detection API
to the correct orientation. A frame is considered to be
correctly detected if and only if a face has been detected
and the orientation is correct. A total of 618 detection were
performed, and the API was able to identify users’ face
orientation correctly 10.7% of the time. This detection
performance is significantly lower than what is feasible,
which is up to 77.6%. This is likely because the front
camera usually captures images that only have part of users
faces, but the iOS algorithms require that user’s eyes and
mouth be present. Algorithms that only require partial face
features are likely to improve the success rate.

Figure 5 and Figure 6 shows the detailed success rate for
each of the four tasks which, from left to right, are: 1) user,
holding the device in portrait, changed posture from sitting
to lying down, 2) user rotated device from portrait to
landscape while lying down, 3) user changed posture from
lying down to sitting, and 4) user rotated device from
landscape to portrait while sitting.

The front camera’s position on the devices has strong
effects on detection rate, as they are easy to be obscured in
landscape mode. The first task had the highest success rate
compared to the rest, because the front cameras are near the
top of the devices when held in portrait orientation, and the
cameras had a clear view of the user. For iPhone, the lowest
success rate is when users were holding it in landscape
mode and transitioning from lying down to sitting. Because
the iPhone’s front camera, in landscape mode, is under the
users’ thumbs, the cameras were obscured a significant
portion of times.

The weight of the iPad made rotation more difficult while
lying down compared to sitting upright and compare. The

instability caused a large number of blurry images as well
as many images without users’ faces, causing that iPad task
to have the lowest success rate across both devices and
across all tasks.

Figure 5. Successful face orientation detection rate for iPhone

Figure 6. Successful face orientation detection rate for iPad

Feasibility Analysis
We present a feasibility analysis of iRotate across all users
trials. In a trial, as soon as a frame has a detectable face
orientation, iRotate can correctly rotate the screen
accordingly. That trial is considered to be successful, even
if all subsequent frames do not have detectable face
orientation.

Figure 7 shows the cumulative success rate across all trials,
for the four orientations. The x-axis shows the time elapsed
after Tthreshold, which is the moment that the orientation
threshold angle has been exceeded, as detected by the
accelerometers. The four figures correspond to the four
tasks and orientation changes. The vertical dotted line,
drawn at 0.5 seconds, shows the stability threshold
proposed by Hinckley et al. [12].

For example, although the successful detection rate for
rotating iPad while lying down is only 45.7%, the
cumulative success rate starts at 60% at 0.1 seconds,
improves to 65% at 0.5 seconds, and 80% at 1.0 second.
Overall, iRotate’s front camera-based approach has success
rate ranging between 65-100% at 0.5 seconds, and between
75-100% for the four tasks on iPhone and iPad.

Figure 7. Cumulative success rate of human face orientation
detection across the four tasks: 1) user, holding the device in
portrait, changed posture from sitting to lying down, 2) user

rotated device from portrait to landscape while lying down, 3)
user changed posture from lying down to sitting, and 4) user

rotated device from landscape to portrait while sitting.

DISCUSSION

Orientation Detection based on Partial Faces
iOS 5’s face detection API requires two eyes and a mouth
to be present in order to be detected. However, the front
cameras frequently only have partial faces in their field of
view. This mismatch contributes to the poor detection
performance we observed in our user study. Partial face
detection and face tracking techniques may help to solve
the problem. Camera with even wider field of view should
also help capture more portions of a face, improve the
detection performance.

Another cause for poor detection performance is that users’
often obscure the camera while hold the devices in
landscape mode. Adding another camera on the border of
the device, or placing one behind the display [15] should
help improve the devices’ view of users’ faces.

Janicek, M. [15] filed a patent that integrate a camera in the
center of the display may be a good solution to this
problem.

Limitations
Vision-based techniques are sensitive to lighting conditions.
We observed images from the user study for which strong
backlight triggered the auto brightness adjustment of the
camera. It caused users’ faces to under expose and became
un-recognizable. Also, face detection performance
decreases as light level decreases, which would cause
iRotate to fall back to using gravity-based rotation in
extremely low-light conditions. Adding active infrared
emitter with IR capable cameras to the mobile devices is
one possible improvement, enabling face orientation
detection to function even in complete darkness.

CONCLUSIONS AND FUTURE WORK
We have presented iRotate, a new, front camera-based
approach to automatically rotate screens to match users’
face orientation instead of gravity. It augments gravity-
based rotation techniques by rotating to match users’ face
orientation, before falling back to gravity-based rotation.
The approach can rotate screens correctly in different user
postures and device orientation, and does not require
explicit user input.

Our other contributions include a survey quantifying the
frequency and the most likely cause of incorrect auto-
rotation, as well as the awareness and usability of rotation
lock. Our survey results show strong user needs for better
auto-rotation. We also completed a 20-person study to
assess the feasibility of our front camera-based approach, as
well as evaluated the performance of face detection
algorithms running on current generation of mobile devices.

Our study results show that current face detection
algorithms perform poorly both in terms of speed and
detection correctness. This is likely because the front
camera typical captures images with part of users’ faces
instead of the entire face. We plan to collaborate with

computer vision researchers and machine learning
researcher to develop algorithms that can detect face
orientation based on partial face features, such as hair and
two eyebrows. In addition, we plan to address the second
most common cause of incorrect auto-rotation, which is
when devices are being used on flat surfaces. We plan to
explore using gyroscope readings to trigger face detection
using the front camera, and assess its feasibility.

REFERENCE
1. Balakrishnan, R., Baudel, T., Kurtenbach, G., and

Fitzmaurice, G. The Rockin’Mouse: integral 3D
manipulation on a plane. Proceedings of the SIGCHI
conference on Human factors in computing systems,
ACM (1997), 311–318.

2. Ballagas, R., Rohs, M., and Sheridan, J.G. Sweep and
point and shoot: phonecam-based interactions for large
public displays. CHI’05 extended abstracts on Human
factors in computing systems, ACM (2005), 1200–1203.

3. Bartlett, J.F. Rock ’n’ Scroll is Here to Stay. IEEE
Computer Graphics and Applications, May (2000), 40–
45.

4. Blaskó, G., Beaver, W., Kamvar, M., and Feiner, S.
Workplane-orientation sensing techniques for tablet
PCs. Proceedings of the 17th Annual ACM symposium
on User Interface Software and Technology, (2004).

5. Bradski, G.R., Clara, S., and Corporation, I. Computer
Vision Face Tracking For Use in a Perceptual User
Interface. Intel Technology Journal 2, 2 (1998), 12–21.

6. Fitzmaurice, G.W., Balakrishnan, R., Kurtenbach, G.,
and Buxton, B. An exploration into supporting artwork
orientation in the user interface. Proceedings of the
SIGCHI conference on Human factors in computing
systems: the CHI is the limit, ACM (1999), 167–174.

7. Forstall, S. and Blumenberg, C. Portrait-Landscape
Rotation Heuristics for a Portable Multifunction Device.
US Patent 7978176, 12 July, 2011

8. Hannuksela, J., Sangi, P., Turtinen, M., and Heikkilä, J.
Face tracking for spatially aware mobile user interfaces.
Image and Signal Processing, (2008), 405–412.

9. Hannuksela, J., Sangi, P., and Heikkilä, J. Vision-based
motion estimation for interaction with mobile devices.
Computer Vision and Image Understanding 108, 1-2
(2007), 188–195.

10. Hansen, T.R., Eriksson, E., and Lykke-Olesen, A.
Mixed interaction space: designing for camera based
interaction with mobile devices. CHI’05 extended
abstracts on Human factors in computing systems,
ACM (2005), 1933–1936.

11. Hinckley, K. and Song, H. Sensor synaesthesia: touch in
motion, and motion in touch. Proceedings of the 2011

annual conference on Human factors in computing
systems, ACM (2011), 801–810.

12. Hinckley, K., Pierce, J., Sinclair, M., and Horvitz, E.
Sensing techniques for mobile interaction. Proceedings
of the 13th annual ACM symposium on User interface
software and technology, ACM (2000), 91–100.

13. Hinckley, K., Sinclair, M., Hanson, E., Szeliski, R., and
Conway, M. The VideoMouse: a camera-based multi-
degree-of-freedom input device. Proceedings of the 12th
annual ACM symposium on User interface software and
technology, ACM (1999), 103–112.

14. Ip, H.H.S., Hay, Y., and Tang, A.C.C. Body-Brush: a
body-driven interface for visual aesthetics. Proceedings
of the tenth ACM international conference on
Multimedia, ACM (2002), 664–665.

15. Janicek, M. CAPTURING AN IMAGE WITH A
CAMERA INTEGRATED IN AN ELECTRONIC
DISPLAY. US Patent App. 20,090/009,628, 2007.

16. Lienhart, R., Kuranov, A., and Pisarevsky, V. Empirical
analysis of detection cascades of boosted classifiers for
rapid object detection. The German 25th Pattern
Recognition Symposium (DAGM ’03), (2003), 297–304.

17. Ording, B., Van Os, M., and Chaudhri, I. Screen
Rotation Gestures on a Portable Multifunction Device.
US Patent 7978182, 12 July, 2011

18. Schmidt, A., Beigl, M., and Gellersen, H.W. There is
more to context than location. Computers & Graphics
23, 6 (1999), 893–901.

19. Segen, J. and Kumar, S. Human-Computer Interaction
using Gesture Recognition and 3D Hand Tracking.
Image Processing, 1998. ICIP 98. Proceedings. 1998
International Conference on, IEEE (1998), 188–192.

20. Sohn, M. and Lee, G. ISeeU: camera-based user
interface for a handheld computer. Proceedings of the
7th international conference on Human computer
interaction with mobile devices & services, ACM
(2005), 299–302.

21. Sparacino, F., Wren, C., Davenport, G., and Pentland,
A. Augmented performance in dance and theater.
International Dance and Technology 99, (1999), 25–28.

22. Sparacino, F. (Some) computer vision based interfaces
for interactive art and entertainment installations.
INTER_FACE Body Boundaries, ed. Emanuele Quinz,
Anomalie, n.2, Paris, France, Anomos, Citeseer (2001).

23. Wang, J. and Canny, J. TinyMotion: camera phone
based interaction methods. CHI’06 extended abstracts
on Human factors in computing systems, ACM (2006),
339–344.

24. Zhang, L., Shi, Y., and Fan, M. UCam: direct
manipulation using handheld camera for 3d gesture
interaction. Proceeding of the 16th ACM international
conference on Multimedia, ACM (2008), 801–804.

