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Figure 1. Heatmap visualization of preferred keyboard layouts and positions for three grasp conditions in our 64-user study: (left) not grasping
the devices, (center) grasping the devices with one hand, (right) grasping the devices with both hands. The most preferred keyboard modes are
merged+docked, merged+undocked, and split+undocked, respectively.

ABSTRACT
Multitouch tablets, such as iPad and Android tablets, sup-
port virtual keyboards for text entry. Our 64-user study
shows that 98% of the users preferred different keyboard
layouts and positions depending on how they were holding
these devices. However, current tablets either do not allow
keyboard adjustment or require users to manually adjust the
keyboards. We present iGrasp, which automatically adapts
the layout and position of virtual keyboards based on how
and where users are grasping the devices without requiring
explicit user input. Our prototype uses 46 capacitive sensors
positioned along the sides of an iPad to sense users’ grasps,
and supports two types of grasp-based automatic adaptation:
layout switching and continuous positioning. Our two 18-
user studies show that participants were able to begin typing
42% earlier using iGrasp’s adaptive keyboard compared to the
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manually adjustable keyboard. Participants also rated iGrasp
much easier to use than the manually adjustable keyboard (4.2
vs 2.9 on five-point Likert scale.)
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INTRODUCTION
Multitouch mobile devices, such as iPhone, iPad, and An-
droid tablets, support virtual keyboards for text entry. While
text entry performance for virtual keyboards has been ex-
tensively studied and improved, such as through gestures
[17] and adaptive techniques including predicted target zones
[10,13] and motion compensation [7], most work has focused
on fixed keyboards. This paper explores automatic adaptation
versus manual adjustment of the keyboard layouts (hori-
zontally split and merged) and vertical keyboard positions
(docked at the very bottom and undocked).

To better understand users’ preferences for the layout and
position of virtual keyboards, we conducted our first user
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study: a 64-person observational study. We asked participants
to perform typing tasks under the three grasp conditions
of using a tablet: 1) not grasping the device, 2) grasping
the device with one hand, and 3) grasping the device with
both hands. For each grasp condition, participants used all
four possible keyboard modes and vertical positions currently
available on iPad: 1) merged+undocked, 2) merged+docked,
3) split+undocked, and 4) split+docked1.

We asked the participants to report their preferred keyboard
layout and position for each of the three grasp conditions.
Figure 1 shows a heatmap visualization of the results. Most
users preferred merged+docked mode when not grasping the
devices, merged+undocked when grasping the devices with
one hand, and split+undocked when grasping the devices with
both hands (preferred by 74%, 88%, and 70% of the users,
respectively). In addition, 98% of the participants preferred
two or more distinct keyboard modes, for an average of 2.49
distinct keyboard modes across the three grasp conditions.
Furthermore, among the 17 iPad owners in the study, 76%
were not aware that its keyboard were adjustable, indicating
a potential discovery problem for manually adjustable key-
boards.

We present iGrasp, which automatically adapts virtual key-
board’s layout and position based on users’ grasps without
requiring explicit user input. We built an iGrasp prototype
using 46 capacitive sensors placed on the sides of an iPad,
which are connected to an Arduino board and then wired into
iPad’s serial port. It is capable of sensing the users’ grasp
position in 1 cm resolution, and can distinguish between the
three grasp conditions.

iGrasp supports the following two adaptation modes to im-
prove performance and ease-of-use of virtual keyboards.

• iGraspSwitch: senses the user’s grasp condition by group-
ing the 46 sensors into four sensor groups and adapts the
keyboard to the same layout and position that was last used
for the currently sensed grasp condition.

• iGraspPosition: additionally senses the current grasp po-
sition and continuously adapts the keyboard to the grasp
location by utilizing all 46 sensors.

We conducted the other two user studies to evaluate iGrasp
for two adaptation modes. For iGraspSwitch, our results show
that participants strongly preferred iGrasp over manually
adjustable keyboards (4.2 vs 2.9 on five-point Likert scale).
Also, the time to type the first character improved by 42%,
from 2.57 seconds to 1.49 seconds. For iGraspPosition,
our results show no statistically significant improvement in
performance nor preference over iGraspSwitch. Based on
our findings, its possible to implement iGrasp using only four
capacitive sensors, with each sensor having a sensing area
that covers half of each side of the device and having similar
width as our prototype.

1We used private iOS APIs to enable split+docked mode, because
the default iOS behavior would merge the keyboard when it is
docked.

Our contributions include the following: 1) we show that
most users have different preferred virtual keyboard layouts
and positions for different grasp conditions, 2) we propose
iGrasp, a novel approach that uses implicit grasps of a device
to automatically adapt the on-screen keyboard’s layout and
position to match users’ preferences, 3) we show that the
grasp-based adaptive keyboard significantly helps users to
type earlier and is strongly preferred by users over current
manual approaches.

The rest of the paper is organized as follows: first, we discuss
related work, then describe the first observational user study
and finding. We then present iGrasp design and implemen-
tation, and discuss evaluation methodology and results for
the second and third user studies. Last, we conclude with
discussion, contributions, and future work.

RELATED WORK
Modern mobile devices often have different kinds of sensors
such as accelerometers, gyroscopes and cameras, to support
contextual sensing [27]. The users’ context then can be
used for adapting interfaces. For example, WalkType [7]
uses touch and accelerometer data while users are sitting and
walking to built displacement models that can be used to
compensate for imprecise input during walking. Researchers
also use accelerometers and cameras to rotate screen orienta-
tion [3, 14, 28]. iGrasp sees users’ grasps as their context to
adapt the keyboard interface. In the following sections, we
will discuss related work about 1) text entry and keyboard
adaptation, 2) sensing grasp and 3) grasp-based user inter-
face.

Text Entry and Keyboard Adaptation
Visible and invisible key-target adaptation have been widely
studied to improve text entry performance of virtual key-
boards. Examples of visible adaption include Himberg et
al. [13], who propose key shape, size and position adaptation
based on users’ previous touches. Text Text Revolution [23]
is a typing game that helps users improving typing perfor-
mance. The game provides targeting practice, highlights
areas for improvement and generates training data for key-
target resizing. BigKey [5] expands the key size of the next
entry character predicted from tables of single letter and dia-
gram frequency counts [19]. Fitrianie et al. [6] use n-grams
language model to predict the next most likely character and
resized a circular text input interface. iGrasp is also a type of
visible adaptation, but instead of resizing keys on a keyboard,
iGrasp changes the layout and position of the entire keyboard.

Invisible input adaptation changes the touch size, shape,
and location of keys, but does not modify their on-screen
appearances to minimize the possibility of visual distraction.
Gunawardana et al. [10] propose an anchored method to avoid
overly aggressive key-target resizing. Each key’s target area
would change invisibly without crossing other key’s anchor.
Because iGrasp changes the layout and position of the entire
keyboard, it can augment visible and invisible key-target
adaption techniques.

Session: Mobile Gestures CHI 2013: Changing Perspectives, Paris, France

3038



Sensing Grasp
Many sensing technologies have been used to sense grasp.
GripSense [8] leverages the built-in inertial sensors, vibration
motors, and touchscreens of smartphones for grip and pres-
sure detection. After monitoring device rotation, touch size,
and thumb swiping, users’ hand postures could be inferred.

Capacitive sensing is commonly used for researching touch
sensing input devices [15] and users’ grasp [16,30,35]. Many
new technologies are invented based on capacitive sensing.
Touché [25] proposes Swept Frequency Capacitive Sensing
(SFCS) which sweeps through a range of frequencies to ob-
tain a multitude of responses to know how a user is touching
the object. Midas [26] is a software and hardware toolkit
for automatically synthesizing capacitive touch sensor that
enables designers to build touch sensitive prototype in any
shape. Time domain reflectometry [21, 34], which originally
was used to diagnose cable faults, can be used to locate
a users touch on form factors such as guitar strings and
conductive ink. Hand-Sense [35] uses four capacitive sensors
on two long edges to recognize left-hand and right-hand
usage. Our iGrasp prototype uses 46 capacitive sensors.

Pressure sensors [11,22,31] and impedance sensors [20] have
also been used to sense grasps. Tango [22] uses 256 pressure
sensors to make a hand-size ball as a haptic interface for 3D
objects. The sensors use two layers of electrically conductive
strips separated by a compressible foam rubber. Pressure
compresses the two layers, thus increasing the capacitance.
Arrays of piezo-resistive elements have been used identify
the grip patterns on smart guns in order to identify the user
for safety purposes [31].

Light and infrared sensors have also been used to sense
grasps. TouchString [9] concatenates units of LED photo-
transistor pairs to form a multitouch sensor rail that can
surround surfaces of objects such as bottles and mobile
phones. SideSight [2] uses infrared proximity sensors em-
bedded along the side of small devices to detect the presence
and position of fingers. FlyEye [33] also uses infrared light
and a camera to detect touch and proximity by measuring the
changes in light reception through optical fibers that are em-
bedded in the surface. Rock-paper-fibers [24] uses a bundle
of optical fibers observed by a webcam and recognized how
the bundle is shaped and touched by matching the resulting
graph with its widget database.

Grasp-based User Interfaces
Graspables [30] uses several capacitive touch sensors as
discrete, binary input to sense touches. They built two
prototypes that can switch between the multiple functions
of a device based on grasp: Bar of Soap switches between
different applications, including camera, gamepad, phone,
and remote control. Ball of Soap selects different pitches such
as fastball and curveball. Kim et al. [16] report the accuracy
of different machine learning methods on classifying eight
grip patterns, and use the detected grip launch mobile device
applications: call, SMS, cam-era, video, and game. There
is further research discussing grasp interaction on mice and
pens such as MT mouse [1] and MTPen [29]. Based on
users’ grasps, they could decide whether to switch to the

other modes for hovering and drawing. GRASP [34] proposes
a model of human grasping that describes five meaningful
factors - goal, relationship, anatomy, setting and properties,
and offers a basis and framework for further research and
discussion. BiTouch and BiPad [32] studies users’ holds of
tablets and designed bi-manual interaction techniques such as
chords and gestures on the bezel of devices. iRotateGrasp [4]
proposes using users’ grasps to adapt the screen orientation
to users’ viewing orientations on mobile phones. They
collected users’ grasps in different postures and orientations
by the capacitive sensors on the edges and the back of their
phone-sized prototype, and then they used support vector
machine (SVM) to classify grasps into viewing orientations.
iGrasp uses capacitive sensors as well. However, our paper
focuses on investigating how users’ typing experience can be
improved by our proposed adaptation — changing the virtual
keyboard layout and position based on how and where users
are grasping their tablets.

OBSERVATIONAL STUDY
We designed a study to understand users’ preferences for
keyboard layouts and positions. We targeted the portrait
orientation because it is a common usage and users’ grasp
positions would have more variation. We developed a custom
text entry application for iPad that recorded the preferred
keyboard layout (split or merged) and the Y-axis position of
the keyboard. We recruited 64 participants (age 16 to 57,
39% female) and 27% owned iPads (average ownership 13.6
months).

Participants first learned how to change the keyboard layout
and position, and tried all four keyboard modes in the por-
trait orientation: 1) merged+undocked, 2) merged+docked,
3) split+undocked, and 4) split+docked. Using the same
manual adjustment methods as the built-in iPad keyboard,
participants learned to change the keyboard’s position by
dragging the bottom-right button up and down. In addition,
participants learned to split and merge the keyboard by per-
forming pinch-in and pinch-out gestures on the keyboard.
76% of iPad owners reported that they did not know how to
adjust the keyboard, indicating a potential discovery problem
for manual keyboard adjustment.

Next, participants explored keyboard layouts and positions
for each of these three conditions: 1) placing the device on
a surface and not grasping the device, 2) grasping the device
with one hand and typing with the other hand, and 3) grasping
the device with both hands. We did not constrain how users
grasped the devices. For example, in the single-handed grasp
condition, most users grasped an edge of the tablet, but a
few users supported the tablet with their forearms instead.
For each condition, we asked the participants to try all four
keyboard modes, and to type at least three phrases that were
randomly selected from the Makenzie and Soukoreff phrase
set [18] . After participants felt they had found a preferred
keyboard layout and position for each condition, the layout
and position were recorded. The average session duration was
10.4 minutes.
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Figure 2. Distribution of the most preferred keyboard mode by grasp
condition.

Figure 3. Distribution of the number of distinct keyboard modes
preferred by each user for three different grasp conditions.

Keyboard Layout and Position Preferences
Figure 1 shows the heatmap visualization of keyboard layout
and position preferences for all participants. Figure 2 shows
the distribution of the most preferred keyboard mode for
the 64 participants for each of the three usage conditions,
showing that the most preferred keyboard mode is different
for each condition. When typing without holding the devices,
74% of the participants preferred the merged+docked key-
board. This is the default keyboard mode supported on all
the tablets that we surveyed, including iPad, Android tablets,
RIM Playbook, and Palm TouchPad. When grasping the
device by one hand and typing using the other hand, 88% of
the participants preferred merged+undocked keyboard. When
holding the devices using both hands, 70% of the participants
preferred the split+undocked keyboard while 25% of the par-
ticipants preferred merged+undocked keyboard. Participants
commented that the split keyboard design had the following
disadvantages: 1) keys were too small, 2) some keys such as
’B’ were placed on the side they were not used to, and 3)
they needed more time to visually seek characters across the
middle of the keyboard.

Participants chose an average of 2.49 distinct keyboard modes
across the three grasp conditions, and 98% of the participants
chose at least two distinct keyboard modes. The detailed
distribution is shown in Figure 3.

No Grasp One-Handed
Grasp

Two-Handed
Grasp

Average (pixel) 63 245 223
Median (pixel) 0 255 215

Standard Deviation 105 92 73
Table 1. Average and median keyboard position offset for the three
usage conditions.

Table 1 shows the mean and the median of keyboard Y-
axis position offset of all participants for each of the grasp
conditions. The Y-axis offset value is 0 for the docked
position. The high standard deviations in all three conditions
show that users preferred very different keyboard positions.
The mean of Y-axis position when users grasped the devices
by one hand was 245 pixels (SD=92), and 223 pixels (SD=73)
when users grasped the devices with both hands. These values
may be used by iGrasp as the default keyboard positions.

DESIGN
The results from the observational study show that iGrasp
needs to adapt both the layout and position of the keyboard.
We designed two types of grasp-based adaptation: iGrasp-
Switch and iGraspPosition.

iGraspSwitch
Adaptive layout switching augments manual keyboard adjust-
ments by helping users automatically switch between differ-
ent keyboard modes. It senses the current grasp condition
(none, one-handed, and two-handed) and then automatically
shows the keyboard using the same layout and position that
was last used for that grasp condition. This requires the
system to have sufficient sensor resolution to distinguish be-
tween different types of grasp. Also, the system needs to save
the keyboard layout and position for each grasp condition.
Although this approach may not always position the keyboard
to exactly where the users’ hands are, it provides users with
the option to manually adjust the keyboard positions and
layouts.

iGraspPosition
Instead of showing the keyboard at the last-used position,
iGraspPosition senses the current grasp position and shows
the virtual keyboard at that location. It shows the same
keyboard layout that was last used for the current grasp
condition. To avoid constant movement of the keyboard while
typing, the system stops re-positioning the keyboard once
the user has started typing. There are two key challenges to
this adaptation. First, the system must be able to locate the
grasp position with sufficient resolution in order to accurately
position the keyboard. Second, the system must have an
accurate model that maps the user’s grasp position to an
optimal keyboard position. Because users’ hand sizes may
vary significantly, personalized calibration can be used to
improve the system’s performance. The trade-off of this
approach is that it replaces manual position adjustment so
that if the keyboard is poorly positioned due to an inaccurate
model, it will always be positioned poorly for that user.
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IMPLEMENTATION
Our goal is to build a tablet-sized device that is capable of
sensing the grasp position and distinguishing between differ-
ent grasp conditions: no grasp, one-handed grasp, and two-
handed grasp. The form factor and weight should be similar
to typical tablets to minimize changes in users behavior. After
exploring several sensing approaches, including light sensors
and clip-on sensors [36], we decided to use capacitive sensors
which are not sensitive to lighting conditions and can be
placed more densely than clip-on sensors.

iGrasp Prototype
Our iGrasp prototype consists of the following components:
an Arduino Pro Mini 328 circuit board, four Freescale ca-
pacitive touch sensor controllers MPR121, an iPad case, and
an iPad 2. As shown in Figure 4, the circuit board and
the controllers are placed in the center on the back side of
the iPad. We placed 46 copper foils along both of the long
sides of the iPad, with 0.2 cm gaps between the foils. Each
copper foil is 4.0 cm × 0.8 cm in size and is connected to the
capacitive sensor controllers, and the Arduino board samples
each sensor as binary readings at 60Hz, then transmits the
data to iPad via the serial port. All subsequent processing
is done on the iPad, which runs iOS 5.1 and is jailbroken to
enable the serial port. The dimension of the prototype is 18.9
cm (W) × 24.2 cm (H) × 1.3 cm (D). Its weight is 662 g, 18
g lighter than iPad 1 and 10g heavier than iPad 3.

Figure 4. Photos of iGrasp prototype, showing an iPad 2, an Arduino
board, four capacitive touch sensor controllers connected to 46 copper
foils, all glued to an iPad 2 case.

Sensing Grasp Condition
Based on how users held the iPads in our observational study,
we divided the 23 sensors on each side into top-half and
bottom-half groups, for a total of four sensor groups. We
merge all sensors in each group into a binary ON/OFF read-
ing. Because all the sensor readings were already in binary
form, merging sensor readings is simply an OR operation.
We used the following heuristics: 1) if all of the sensor groups
are OFF, then the user is not grasping the device. 2) for one-
handed grasps, there are two grasps that we observed in our
observational study. The first one is grasping a tablet by its
edge using only one hand. This results in one or both sensor
groups on one side showing ON, but both sensor groups
on the other side would be OFF. We also observed a small
number of users who would rest a tablet on their forearms and

grasp the opposite top corner. In this case, a bottom sensor
group on one side and the top sensor group on the other side
would be ON, but the remaining two sensor groups would be
OFF. 3) all other sensor group readings are considered to be
two-handed grasps.

Sensing Grasp Position
The current prototype has 23 sensors on each of iPad’s long
sides (24.2 cm), so it has about 1 cm resolution in sensing
grasp position. On each side, we label each sensor from the
bottom-most one as Si, i = 0 · · · 23, and the hand position H
is calculated using

H =

∑
Si∈S i

|S|

where S = {Si| sensor i is touched }. To determine where
to display the keyboard based on the sensed grasp position,
the user could optionally complete a calibration process. Our
calibration process has each user grasp the top, middle, and
bottom third of the iPad and also manually move the keyboard
to a comfortable position K for each of the grasps. We then
use a linear regression function generated by a set of (H,K)
pairs to calculate the keyboard position given a sensed hand
position.

EVALUATION
We evaluated iGrasp’s automatic layout and position adapta-
tions by conducting two typing studies under several grasp
conditions and postures:

1. comparing iGraspSwitch, which automatically switches
to the memorized layout and position, to the manually
adjustable keyboard.

2. investigateing whether iGraspPosition, which additionally
positions the keyboard to users’ grasp location, improves
upon iGraspSwitch.

For both user studies, we measured the initial placement
time, which is the time that elapsed between the keyboards
appearing on screen until the time that users begin to type.
The more closely the keyboard layout and position matches
the users’ preferences, the more quickly the users would be
able to begin typing and the lower the initial placement time
would be. Conversely, if the keyboard layout and position
are not ideal, users would either need to move their hands to
accommodate the keyboard layout and position, or need to
manually adjust the keyboard to suit their preferences before
they begin to type. We also recorded the total task completion
time, and typing speed which additionally captures how well
the layout matches the users’ preferences. We used one way
ANOVA and paired t-test to see if the result was significantly
different. Furthermore, users reported subjective preferences
using five-point Likert scales.

iGraspSwitch vs Manual
Our research question in this study is how our automatic key-
board layout and position switching affect task performance
and user preferences.
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Study Design
In order to compare our automatic keyboard adaptation and
the manual adjustment, we are interested in understanding
how each approach performs for the following three grasp
conditions: no grasp (0G), one-handed grasp (1G), and two-
handed grasp (2G). Specifically, there are 6 possible grasp
transitions that users would normally make as they use their
tablets in different settings: 0G → 1G, 0G → 2G, 1G →
0G, 1G→ 2G, 2G→ 0G and 2G→ 1G.

At the beginning of the user study, participants went through
a 5-minute training session to practice how to adjust the key-
board layout and position. They also practiced typing tasks to
identify their preferred keyboard layout and position for each
of the grasp conditions. During the user study, participants
could freely adjust the keyboard layout and position.

In order to have participants start each typing task while
grasping the devices naturally, each participant first per-
formed one of the six grasp transitions before starting the
task. For each typing task, participants touched an input text
field to activate the keyboard, then typed a phrase that was
randomly selected from the Makenzie and Soukoreff phrase
set [18]. If the input field was occluded by the keyboard, the
test app would scroll automatically to make it visible. Each
users went through all six possible transitions for the iGrasp
condition and for the manual condition, for a total of 12
typing tasks. The order of iGrasp and the manual keyboard, as
well as the starting grasp conditions were counter-balanced.
Participants filled out a questionnaire on demographics and
preferences after they finished all the tasks.

Analysis
We recruited 18 participants (6 female) from our university
population. The age of participants ranged from 21 to 25.
All were regular computer users and had experience with
touchscreen devices. Three of the participants had their own
tablets for more than three months.

We quantified participants’ grasp movement by summing up
differences in a sequence of sensed hand positions H . That
is, the grasp distance moved Dtotal is:

Dtotal = ΣT
t=2|Ht −Ht−1|

where HT is the last hand position sensed before task comple-
tion. The initial grasp distance moved was calculated in the
same manner but summed up to the time the first character
was typed.

Figure 5a) shows that average initial placement time, which
was the time between the keyboard being activated and the
time that the first character was typed. iGrasp improved
the initial placement time by 42% compared to the current
manual approach (1.49s vs 2.57s). This difference is statis-
tically significant: (F1,118 = 12.263, p < 0.001). We also
ran a two-way ANOVA of techniques (iGrasp vs manual)
and conditions (6 transitions). The main effect of conditions
is not significant (p = 0.5) and the interaction effect of
techniques and conditions is not either (p = 0.95). Figure
5b) shows the average initial grasp movement distance, which
was the total distance the users’ hands moved until the first

(a) Initial Placement Time

(b) Initial Grasp Movement

Figure 5. The initial placement time and initial grasp movement distance
for iGrasp and manual layout switching. The error bars represent one
standard deviation.

character was typed. The two posture transitions to the no-
grasp condition (1G → 0G and 2G → 0G ) have no data
because the participants were not grasping the device. For all
other conditions, the average distance reduced by 53% from
cm to cm.

We also found that iGrasp had some improvement in terms
of words per minute (WPM) and error rate; however, the
difference was not statistically significant in our 18-person
user study. The typing speed for iGrasp vs. manual mode
was 26.6 vs. 24.8 WPM (p = 0.61), and the error rate was
4.3% vs 4.4% (p = 0.95). A much larger user study may help
draw statistically significant conclusions.

In addition, we asked participants to rate the ease of use
of both iGrasp and the manually adjustable keyboard on
a fve-point Likert scale, and the participants rated iGrasp
significantly higher at 4.2 vs 2.9 for manual adjustment. The
difference in rating was also statistically significant (F1,18 =
23.4, p < 0.001).

iGraspSwitch vs iGraspPosition
Our research question in this study is how continuous po-
sitioning, which tracks the exact grasp position and moves
the keyboard to that position, affects users’ performances and
subjective preferences.

Study Design
This study focuses on comparing different approaches to
position the keyboard. In order to control for the different
layouts (split vs merged) and layout transitions, we focus on
the two-handed grasp that supports more usage scenarios, and
only use the corresponding split layout that was preferred by
the most participants from our first study (70%). The three
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positioning techniques are the following: 1) docked at the
bottom, which is the default position on iOS and the only po-
sition supported by Android 4.0, 2) iGraspSwitch that shows
the keyboard at its last-used position, and 3) iGraspPosition
that continuously tracks the exact grasp position and shows
the keyboard at that position the moment the keyboard is
activated.

At the beginning of the user study, participants went through
a 5-minute training session to practice how to adjust the
keyboard layout and position. Participants were then asked
to do calibration in each posture for us to build a personalized
model on positioning the keyboard based on each users’
particular grasp positions. Our testing application instructed
participants to grasp the tablet at three different positions
and asked the participants to adjust the keyboard to their
most comfortable position. Participants then typed a short
phrase while the participant’s sensed hand position H and
the keyboard position K was recorded to build a regression
model.

To thoroughly evaluate how well each positioning approach
works, we needed the participants to perform typing tasks
with a large number of postures that people would normally
take when using tablets. Also, because we were primarily
interested in the initial placement time between the different
keyboard positions, shorter words that enable more trials
would be preferable.

We asked the participants to go through the following se-
quence of five postures: lying down, lying on one side, sitting
and leaning back, sitting, and standing. For each posture, the
participants first picked up the tablet, activated the keyboard,
completed a typing task, then placed the tablet down before
transitioning to the next posture. Similar to our second user
study, picking up the tablet at the beginning of each posture
is important to ensure that the participant would be grasping
it naturally, and not affected by the previous task or posture.
The short typing tasks we used was based on the 100 most-
frequently-used words that were three characters long and
contained characters on both sides of the split keyboard.

In order to prevent the participants from anticipating where
the keyboard would appear, we did not reveal which posi-
tioning approach was used and we randomly shuffled the
positioning order for each posture. Each participant needed
to go through the posture sequence three times to experienced
all possible keyboard positions and posture combinations. We
asked each participant to perform two trials, so each user went
through the sequence of postures six times for a total of 30
typing tasks (3 keyboard positions × 5 postures × 2 trials).
After the participants finished the two trials, they completed
an additional trial in which the keyboard positioning approach
was revealed to them. We then asksed the participants to fill
out a questionnaire and the NASA perceived workload index
(TLX) [12]. We also interviewed them to get their feedback.

Analysis
We recruited another 18 participants (8 female) from our
university population that were completely different from our
second study. The age of the participants ranged from 19 to

(a) Initial Placement Time

(b) Initial Grasp Movement

Figure 6. Inital placement time and initial grasp distance moved for
the three keyboard positioning approaches: docked, position switching,
and continuous positioning. The error bars represent one standard
deviation.

24. All were regular computer users and had experience with
touchscreen devices. Six of the participants owned tablets.

Figure 6 shows the average initial placement time and also the
initial grasp movement, which is the distance the participants’
hands had moved before typing the first character. As shown
in Figure 6a), both iGraspPosition and iGraspSwitch’s had
nearly identical initial placement time. The initial placement
time and task completion time significantly improved by 21%
and 22% (F2,537 = 32.13, p < 0.001) over the default,
docked position, respectively.

The results show that iGraspPosition was the most accurate
in placing the keyboard at users’ comfortable typing location,
causing the users’ hands to move the least distance. The
average total grasp movement of iGraspSwitch was 2.58cm.
The 66% improvement over the default docked position is
significant (F2,537 = 46.37, p < 0.001), but is not sta-
tistically significant (p = 0.09) from iGraspPosition. The
average initial grasp movement distance of iGraspPosition
was also the lowest at 2.14cm. The 63% improvement over
the default position is statistically significant but is not statis-
tically significant (p = 0.25) compared to iGraspPosition.

The results of subjective workload with the NASA TLX
procedure are shown in Figure 7. The result indicates that on
average the workload of iGraspPosition and iGraspSwitch are
lower and the difference is statistically significant (p < 0.05)
compared to the default keyboard. Howerver, there is no sig-
nificant difference in each subscale between iGraspPosition
and iGraspSwitch (p > 0.05).

In addition, participants rated the ease of use for each key-
board positioning approach using a 5-point Likert scale. The
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Figure 7. NASA TLX task load scores for the three keyboard positioning
approachs.

rating of the default keyboard is 1.33. iGraspPosition and
iGraspSwitch were rated 3.94 and 3.77, respectively. The
difference is significant (p < 0.01) between the default
keyboard and iGrasp’s approaches, but the difference is not
significant (p = 0.76) between the two iGrasp modes.

To summarize our findings from the third user study, both
iGraspPosition and iGraspSwitch approaches are signifi-
cantly better than the docked keyboard position in terms of
task performance, perceived task load, and participants’ pref-
erences. However, we did not observe statistically significant
difference between the two iGrasp approaches in any of the
metrics we analyzed.

DISCUSSION

Users’ Tolerance of Positioning Error
Results from our third user study show that even though
continuous positioning had shorter grasp movement distance,
participants’ typing performance was comparable. It suggests
that users are able to tolerate some amount of positioning
error. To better understand this tolerance, we analyzed each
user’s grasp position from iGraspPosition keyboard from our
third user study. The optimal grasp position HO was recorded
when each user chose their preferred keyboard position. We
then define tolerance as the distance from HO to users’ grasp
positions at the end of each typing task (five postures × two
trials). We use the position of the last character typed instead
of the first character because users’ hands may still be moving
during the task, and the ending position is likely to be the
more comfortable typing positon.

For each user, we calculated the maximum tolerance across
the 10 tasks. The average tolerance across all users (N=18) is
4.2 cm. If we further drill down and separate the grasps above
HO and below HO, we get a tolerance of 4.2 cm when users’
grasp above the optimal typing postion, and a tolerance of 0.4
cm when users grasp below. This large difference suggests
that it is much easier to reach below to type on a keyboard
that is positioned too low, than to reach above to type on
a keyboard that is positioned to high. Figure 8 shows the
cummulative distribution function of tolerance. 50% of the
users have a tolerance of 4.0 cm.

Based on this finding, it is better to implement iGraspSwitch
than to implement iGraspPosition because it only needs four

Figure 8. Cumulative distribution function of users’ positioning error
tolerance.

capacitive sensors. Each sensor should have a sensing area
that covers half of each side of the device and have similar
width as our prototype. Four sensors are needed instead of
two because we observed some one-handed grasps in our
observational study where users rested the bottom corners
of the devices on their forearm and grasped the opposite top
corner of the devices.

Limitations
In our pilot study, a participant wearing shorts reported that
the keyboard position was far from his grasp position. It
turned out that he was resting the device on his legs to
support it, and the sensors near the bottom were reporting
touch events. We adjusted the sensor layout and removed the
two sensors at the bottom, leading to our current 46-sensor
prototype. We are currently building an iGrasp prototype to
support both landscape and portrait usages, and are exper-
imenting with touch point clustering to identify contiguous
grasp regions and then applying machine learning techniques
to build a more robust grasp classifier.

Capacitive sensors have some inherent limitations. For ex-
ample, wet hands and users wearing gloves would be difficult
to detect correctly. When no grasps are detected, iGrasp
would present the keyboard used in the no-grasp condition,
which is most likely docked, and would provide the same user
experience as the default keyboards. Users in these situations
may also have trouble typing on the capacitive touchscreen
keyboard.

Real-time Positioning
We implemented real-time keyboard positioning and tested
it by our study with additional 5 users (age 19 to 24, 2
female). The system would track users’ grasps and move the
keyboard to match the users’ hand position even when users
were typing. All users who tested real-time positioning com-
mented that the constantly-moving keyboard was distracting,
and they could not type correctly due to keyboard drifting
caused by slight changes in grasp while typing. We modified
the positioning to stop updating its position after the first key
is pressed in our user studies.

Enhancing Continuous Positioning
During our pilot studies, we encountered several challenges
in implementing accurate continuous positioning. The first
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was how to stabilize the sensed grasp position, since users’
hands may come in and out of contact with the sensors. When
users grasp a tablet, movement such as stretching a thumb
to reach a far target may cause the sensed hand position to
change. We used moving average approach which buffered
the last 30 sensor readings (0.5 seconds at 60 Hz) and returned
the average value to minimized such drifting to improve
positioning accuracy.

The second challenge was building an accurate personalized
model to map a sensed grasp position to users’ desired key-
board position. During our pilot studies, we used the second
order polynomial regression. By examining users’ models
built from sets of (hand, keyboard) pair collected in different
postures, we found all models were close to linear, so we
used the linear regression in our final prototype to avoid over-
fitting. However, two participants in our pilot study reported
that the keyboard positions were not accurate. One was lower
than the desired position, and one was higher. We analyzed
users’ models again and found that the models in different
postures were different. Therefore, the predicted result may
be accurate in one posture, but exceed the user’s tolerance
region in another posture. Posture detection may be needed
to switch between different models.

The reasons may be that users’ eyes relative to the hands
and the tablets vary between postures. Also, the comfortable
typing range may also change depending on the relative angle
between users wrists and the tablets. As shown in Figure 9,
with the same grasp position, the user can reach the ’Y’ key
when holding the device at an 90 degree angle relative to his
wrist, but cannot reach the same key when holding the device
at a different angle.

(a) User could reach the top
row when the angle between
wrist and tablet is close to 90
degrees.

(b) User could only reach the
middle row when the angle be-
tween wrist and tablet is about
0.

Figure 9. Users’ reach, relative to their grasp position, changes when the
angle between wrists and tablets changes.

CONCLUSIONS AND FUTURE WORK
Our studies have shown that most users have a different
preferred virtual keyboard layout and position depending on
how they were holding the tablets. We proposed iGrasp,
a novel approach that uses grasp-sensing to automatically
adapts the keyboard layout and position. Our evaluations
show that participants were able to begin typing 42% earlier
using the iGrasp’s adaptive keyboard compared to manually
adjustable keyboards. In addition, participants also rated
iGrasp significantly easier to use (4.2 vs 2.9 on 5-point Likert
scale). We also found that continuous position adaptation
shows no statistically significant improvement over users’
last-used positions.

Although our grasp condition classification heuristics worked
well for the participants in our user studies, we are currently
exploring machine learning techniques to generalize the types
of grasps we can support. We are also exploring other types
of grasp-based adaptive user interfaces, such as resizing the
interaction area based on the grasp size of the users. Last,
we plan to open-source our sensor design and grasp sensing
framework to make it easier for the research community to
explore grasp-based interface and interaction.
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Enhancing Touch Interaction on Humans, Screens,
Liquids, and Everyday Objects. In Proc. CHI ’12, ACM
(May 2012), 483–492.

26. Savage, V., Zhang, X., and Hartmann, B. Midas :
Fabricating Custom Capacitive Touch Sensors to
Prototype Interactive Objects. In Proc. UIST ’12, ACM
(2012), 579–588.

27. Schmidt, A., Aidoo, K., Takaluoma, A., Tuomela, U.,
Van Laerhoven, K., and Van de Velde, W. Advanced
interaction in context. In Handheld and ubiquitous
computing, Springer (1999), 89–101.

28. Schmidt, A., Beigl, M., and Gellersen, H. There is more
to context than location. Computers & Graphics 23, 6
(1999), 893–901.

29. Song, H., Benko, H., Guimbretiere, F., Izadi, S., Cao,
X., and Hinckley, K. Grips and gestures on a multi-touch
pen. In Proceedings of the 2011 annual conference on
Human factors in computing systems, vol. 21, ACM
(2011), 1323–1332.

30. Taylor, B., and Bove Jr, V. Graspables:
grasp-recognition as a user interface. In Proceedings of
the 27th international conference on Human factors in
computing systems, ACM (2009), 917–926.

31. Veldhuis, R., Bazen, A., Kauffman, J., and Hartel, P.
Biometric verification based on grip-pattern recognition.
In Security, Steganography, and Watermarking of
Multimedia Contents, volume 5306 of Proceedings of
SPIE, vol. 31, Centre for Telematics and Information
Technology University of Twente (2004), 634–641.

32. Wagner, J., Huot, S., and Mackay, W. BiTouch and
BiPad : Designing Bimanual Interaction for Hand-held
Tablets. In Proc. CHI ’12, ACM (2012), 2317–2326.

33. Wimmer, R. FlyEye: grasp-sensitive surfaces using
optical fiber. In Proc. TEI ’10, ACM (2010), 245–248.

34. Wimmer, R., and Baudisch, P. Modular and deformable
touch-sensitive surfaces based on time domain
reflectometry. In Proc. UIST ’11, no. 1, ACM (2011),
517–526.

35. Wimmer, R., and Boring, S. HandSense: discriminating
different ways of grasping and holding a tangible user
interface. In Proc. TEI ’09, ACM (2009), 359–362.

36. Yu, N., Tsai, S., Hsiao, I.-c., Tsai, D., Lee, M., Chen,
M., Hung, Y., and Others. Clip-on gadgets: expanding
multi-touch interaction area with unpowered tactile
controls. In Proc. UIST ’11, ACM (2011), 367–372.

Session: Mobile Gestures CHI 2013: Changing Perspectives, Paris, France

3046


	Introduction
	Related Work
	Text Entry and Keyboard Adaptation
	Sensing Grasp
	Grasp-based User Interfaces

	Observational Study
	Keyboard Layout and Position Preferences

	Design
	iGraspSwitch
	iGraspPosition

	Implementation
	iGrasp Prototype
	Sensing Grasp Condition
	Sensing Grasp Position

	Evaluation
	iGraspSwitch vs Manual
	Study Design
	Analysis

	iGraspSwitch vs iGraspPosition
	Study Design
	Analysis


	Discussion
	Users' Tolerance of Positioning Error
	Limitations
	Real-time Positioning
	Enhancing Continuous Positioning

	Conclusions and Future Work
	REFERENCES 



